Hydrogen spillover through hydride transfer: the reaction of ZnO and ZrO2Â with strong hydride donors
M. Benz, O. Bunjaku, M. Nowakowski, A. Allgaier, I. Biswas, J. van Slageren, M. Bauer and D. P. Estes Catal. Sci. Technol., 2024, 14, 5854-5863.
Collaborative Research Center 1333
Molecular Heterogeneous Catalysis in Confined Geometries
Confinement effects in gas-phase CO2 reduction by Cu hydrides immobilized in mesoporous supports
– New project since July 2022 –
Heterogeneously catalyzed gas phase CO2 hydrogenation to methanol can be improved by confinement effects that enhance adsorption, hinder diffusion of reaction intermediates, and enhance metal-support interactions. In this project, monomeric copper hydrides, while not stable in solution, will be stabilized by site isolation in mesoporous covalent organic frameworks (COFs) and mesoporous oxide supports with Lewis acidic pore walls. Confinement effects will be understood using a combination of physisorption, IR, NMR, and neutron-scattering methods and rationally exploited to improve the activity and selectivity of gas-phase methanol synthesis.
M. Benz, O. Bunjaku, M. Nowakowski, A. Allgaier, I. Biswas, J. van Slageren, M. Bauer and D. P. Estes Catal. Sci. Technol., 2024, 14, 5854-5863.
L.Fritsch, P. Rehsies, W. Barakat, D. P. Estes and M. Bauer Chem. Eur. J.2024, e202400357.
M. Schnierle, S. Klostermann, E. Kaya, Z. Li, D. Dittmann, C. Rieg, D. P. Estes, J. Kästner, M. R. Ringenberg and M. Dyballa Inorg. Chem. 2023, 62, 19, 7283–7295.